
 Package ‘pv.ts.sandbox’
 November 16, 2023

 Title Photovoltaic Time Series Sandbox
 Version 0.0.0.9000
 Description Data visualization with shiny, leaflet, and shinyDashboard. Use the Map tab in
 the dashboard for a quick glance at time series data. For a more in-depth analysis, use the
 analyze tab. Functions in this package can be used alone, but were primarily designed to
 work with the dashboard. License MIT + file LICENSE
 Encoding UTF-8
 Roxygen list(markdown = TRUE)
 RoxygenNote 7.2.3
 Suggests devtools,

 knitr,
 rmarkdown,
 roxygen2,
 testthat (>= 3.0.0)

 Config/testthat/edition 3
 Depends R (>= 3.0.2),

 shiny (>= 1.7.5)
 LazyData true
 Imports data.table,

 dplyr,
 ggplot2,
 ggridges,
 viridis,
 hrbrthemes,
 ggExtra,
 rlang,
 lubridate,
 naniar,
 shinydashboard,
 leaflet,
 DT,
 htmlwidgets,
 visdat,
 scattermore,
 magrittr,
 hms,
 shinycssloaders

 VignetteBuilder knitr

 calculate_monthly_energy
 Calculating Monthly Energy of PV System

 Description

 Use when data frame is preprocessed after load_datasets() function. Calculates how
 much energy is yielded from given PV system for all 12 months

 Usage

 calculate_monthly_energy(
 data,
 timestamp.var,
 current.var,
 voltage.var,
 power.var = NULL

)

 Arguments
 data A data.table of time series data with columns containing (current

 output and voltage output data) or (power output data).

 timestamp.var A character. The name of the column in data that represents time.

 current.var A character. The name of the column in data that represents output
 current, "A-dc".

 voltage.var A character. The name of the column in data that represents output
 voltage, "V-dc".

 power.var A character. Default NULL. The name of the column that represents
 the power output values in data . See details.

 Value

 A data.table with energy yielded in month intervals

 Examples

 energy_monthly <- calculate_monthly_energy(data = dt, timestamp.var = "TIMESTAMP",
 current.var = "PV1AMP", voltage.var = "PV2VLT")

 energy_monthly <- calculate_monthly_energy(data = dt, timestamp.var = "TIMESTAMP",
 power.var = "POWOUT1")

 count_missing Count Number of Missing Values

 Description

 Use when data frame is cleaned after using dataset_cleaning() function. Provides a
 numeric value of data cells with NULL or empty values

 Usage

 count_missing(data)

 Arguments

 data A dataframe

 Value

 The total number of NA’s in data .

 Examples

 num_missing <- count_missing(data = dt)

 count_missing_col Count Number of Missing Values for Each Column

 Description

 Use when data frame is cleaned after using dataset_cleaning() function. Provides a
 data.table of numeric values for each column containing NULL or empty values

 Usage
 count_missing_col(data)

 Arguments

 data A dataframe

 Value

 A numeric list containing count of NA’s in each column.

 Examples
 missing_col_count <- count_missing_col(dt)

 dashboard Photovoltaic System Dashboard

 Description

 Photovoltaic System Dashboard

 Usage
 dashboard(

 dt_list,
 metadata,
 timestamp_var = "TIMESTAMP",
 timestamp_format = "%b %d %Y-%H:%M:%S"

)

 Arguments
 dt_list List of data.tables. Obtained from load_datasets()

 metadata The metadata for dt_list. See load_metadata() and save_metadata_template()

 timestamp_var A character. The name of the column in the datasets that represents
 time. Typically "timestamp" or "TIMESTAMP".

 timestamp_format The format of the column specified by timestamp_var. Ensure all datasets
 share identical formats.

 data_summary Generating a Summary

 Description

 Create a general summary of a dataset. Statistics include mean, standard deviation,
 minimum, maximum, median, and mode.

 Usage
 data_summary(data, digits = 3)

 Arguments

 data A data.table of PV data
 digits A numeric value. The cutoff for decimal values.

 Value

 A summary as a data.table

 Examples
 df_summ <- data_summary(data = schoolA_sample, digits = 2)

 date_range Date Range

 Description

 date_range() returns a vector containing the minimum and maximum timestamps. Uses
 the base function range() .

 • The timestamp_var column must be of class POSIXt.

 Usage
 date_range(data, timestamp_var)

 Arguments

 data A dataframe of time series data.
 timestamp_var A character. The name of the column in data that represents time.

 Value

 A vector containing the start date and end date

 Examples
 range <- date_range(data = schoolA_sample, timestamp_var = "TIMESTAMP")

 get_mode Get statistical Mode of List

 Description

 Helper function to find element(s) that appear the most in a list A string will have the
 mode of the given list.

 Usage

 get_mode(lst, na.rm = FALSE, digits = 4)

 Arguments

 lst A vector or list type
 na.rm Whether to remove NA’s prior to calculation
 digits Number of decimal places to round at

 Value

 A string containing the mode(s)

 load_datasets Load Datasets

 Description

 Using the metadata file, load all files listed in metadata$Name_of_File as a list of
 data.tables. Con vert the timestamp column to class POSIXt. Append YEAR, MONTH,
 MONTHYEAR, MDAY, WEEK, and HOUR columns for use in other package functions.

 Usage

 load_datasets(
 data_dir = getwd(),
 metadata = "",
 timestamp_var = "TIMESTAMP",
 timestamp_format = "%b %d %Y-%H:%M:%S"

)

 Arguments

 data_dir Preferred: current directory. The full path to the directory containing PV dataset
 metadata The metadata loaded as a dataframe. See load_metadata()

 timestamp_var A character. The name of the column in the datasets that represents time.

 timestamp_format The format of the timestamp column. Ensure all datasets share
 identical formats

 Details

 Ensure that your data meets the criteria & requirements outlined in
 save_metadata_template() The run time of this function is dependent on the size of the
 provided datasets.

 Value

 A list of data.tables indexed according to how they are indexed in the provided metadata

 Examples
 # loading metadata
 md_path <- list.files(system.file('extdata', package = 'pv.ts.sandbox'),

 full.names = TRUE)[1]

 md <- load_metadata(path = md_path)

 # directory path
 data_directory <- system.file('extdata', package = 'pv.ts.sandbox')

 data_list <- load_datasets(data_directory, md)

 load_metadata Load Metadata

 Description

 Use after filling out the metadata (see save_metadata_template) to load the metadata
 into the environment as a data.table.

 Usage

 load_metadata(path)

 Arguments

 path The full path to the file containing relevant metadata.

 Value

 A data.table

 Examples
 md_path <- list.files(system.file('extdata', package = 'pv.ts.sandbox'), full.names =
 TRUE) md_path <- md_path[1]

 md <- load_metadata(path = md_path)

 plot_heatmap Plot Heatmap

 Description

 Visualize a time series heatmap for the entire dataset categorized by years, months, and hours.

 Usage

 plot_heatmap(data, plot_var, plot_title = NULL)

 Arguments

 data A data.table of timeseries data

 plot_var The desired variable to plot

 plot_title Optional plot title

 Value

 A gg

 Examples

 md_path <- list.files(system.file('extdata', package = 'pv.ts.sandbox'),
 full.names = TRUE)[1]

 md <- load_metadata(path = md_path)

 # directory path
 data_directory <- system.file('extdata', package = 'pv.ts.sandbox')

 # use load_datasets to add necessary columns
 data_list <- load_datasets(data_directory, md)

 plot_heatmap(data = data_list[[1]], plot_var = "PVTMP1",
 plot_title = "Hourly Photovoltaic Temperatures - SchoolA")

 plot_missing Visualize Missing Values

 Description

 Provides a quick over-view of the missingness inside a dataframe using functions from
 visdat and naniar.

 Usage

 plot_missing(
 data,
 type_option = c("gg_miss_var", "vis_miss", "vis_dat", "gg_miss_case",
 "miss_point"), as_percent = FALSE,
 plot_title = NULL,
 miss_point_plotx = NULL,
 miss_point_ploty = NULL

)

 Arguments

 data A data.table

 type_option The type of plot to return. Must be one of c("gg_miss_var", "vis_miss",
 "vis_dat", "gg_miss_case", "miss_point")

 as_percent Some plot types have the option to view a percentage instead of a total

 number plot_title Plot label. Default is none.
 miss_point_plotx

 For type_option = "miss_point" only. The x-axis variable to plot
 miss_point_ploty

 For type_option = "miss_point" only. The y-axis variable to plot

 Details

 • gg_miss_var : Displays a line chart representing missingness of all columns in data.
 See naniar::gg_miss_var

 • vis_miss : Displays a graphic of missingness for all columns in data. Includes specific

 per centages. See visdat::vis_miss

 • vis_dat : Displays a graphic of all columns in data color-coded by data type. See vis
 dat::vis_dat

 • gg_miss_case : Displays a graphic that represents missingness at each row in the
 data. See naniar::gg_miss_case

 • miss_point : Requires miss_point_plotx & miss_point_ploty parameters. For
 specific variable to variable comparison. See naniar::geom_miss_point

 Value

 A gg

 Examples

 plot_missing(data = schoolB_sample, type_option = "gg_miss_var", as_percent = TRUE)
 plot_missing(data = schoolE_sample, type_option = "miss_point",

 miss_point_plotx = "PV1VLT", miss_point_ploty = "PV1AMP")

 plot_raw Scatter Plot w/ Linear Trend

 Description

 Creates a basic scatter plot of the raw data using ggplot2 with scattermore::geom_scattermore.

 Usage

 plot_raw(data, plot_x = "TIMESTAMP", plot_y, pointsize = 0, plot_title = NULL)

 Arguments

 data a data.table

 plot_x the column name in data containing x-values

 plot_y the column name in data containing y-values

 pointsize Numeric. Represents radius of point. See scattermore::geom_scattermore or
 Details.

 plot_title Plot label. Default is none.

 Details

 From scattermore::geom_scattermore pointsize: "Radius of rasterized point. Use 0 for
 single pixels (fastest)."

 Value

 a gg

 Examples

 p <- plot_raw(data = schoolC_sample, plot_x = "TIMESTAMP", plot_y = "WNDDIR",
 plot_title = "School C Sample Data")

 plot_ridgeline Generates a Ridgeline Plot using ggrides

 Description

 Ridgeline plots (also known as Joyplots) help visualize the distribution of a numeric
 variable for several groups. Temperature is the most common variable for Ridgeline plots
 in the photovoltaic community.

 Usage

 plot_ridgeline(
 data,
 plot_var,
 time_period = c("year", "monthyear", "month", "week", "timestamp"),
 color_theme = c("A", "B", "C", "D", "E", "F", "G", "H"),
 ridge_scale = 3,
 x_title = NULL,
 y_title = NULL,
 plot_title = NULL,
 shape_option = "density_ridges",
 legend_name = NULL,
 custom_theme = NULL

)

 Arguments

 data A data.table of time series data.
 plot_var A character or numeric index of the column in data to plot.
 time_period Either "year", "month", "week", or "timestamp". The columns for these can

 be generated from load_datasets() .
 color_theme The color theme of the plot. See viridis::scale_fill_viridis for details on
 themes. ridge_scale Increase or decrease ridge size.
 x_title x-axis label. Default is the name of plot_var .
 y_title y-axis label. Default is time_period .
 plot_title Plot label. Default is none.
 shape_option Adjust the base shape of the ridges. See

 ggridges::geom_ridgeline_gradient for list of shapes.
 legend_name Legend title.

 custom_theme See theme() for a full customization list. See the details section below for
 the default theme.

 Details

 If the default custom.theme = NULL remains the default theme is: theme(legendposition = 'right',
 panel.spacing = unit(0.1, "lines"), axis.text.x = element_text(size = 15), axis.text.y =
 element_text(size = 15), plot.background = element_rect(fill = 'white', color = 'white'))

 Value

 A Ridgeline plot of class "ggplot"

 Examples
 p <- plot_ridgeline(data = schoolA_sample, plot_var = 5, time_period = 'month', color_theme = 'C')

 p <- plot_ridgeline(data = schoolD_sample, plot_var = "AMBTMP", time_period = 'MONTH',
 color_theme = 'D', x_title = 'Ambient Temperature', legend_name = 'Temp.
 [°C]')

 sample_metadata Sample Metadata

 Description

 Relevant metadata for schools A, B, C, D, and E. See sample_data.

 Usage

 sample_metadata

 Format

 An object of class data.table (inherits from data.frame) with 5 rows and 5 columns.

 Name_of_File The name of the file containing timeseries data. Include the file
 extension. School The name of the school or organization where the photovoltaic
 system is located Latitude, Longitude The geographical coordinates of the
 photovoltaic system Climate_Zone The climate zone/ area of the location. c("1", "2",
 "3", "4", "5E", "5W", "7")

 sample_schools Sample Time Series Data

 Description

 A 24 hour sample of photovoltaic data over 15 minute intervals. Values in
 sample_metadata correspond.

 Usage

 schoolA_sample

 schoolB_sample

 schoolC_sample

 schoolD_sample

 schoolE_sample

 Format

 An object of class data.table (inherits from data.frame) with 96 rows and 45 columns.
 sample_schools 13

 Details

 TIMESTAMP is of class character. Remaining classes are numeric.

 TIMESTAMP Date & Time data of format ’%b %d %Y-%H:%M:%S’

 BAT2AM Current out of battery bank [A-dc]

 BAT1AM Current into battery bank [A-dc]

 BATVLT Battery bank voltage [V-dc]

 PV1AMP, PV2AMP, PV3AMP PV array output current [A-dc]

 PV1VLT, PV2VLT, PV3VLT PV array output voltage [V-dc]

 FMUGNT Net cumulative energy from grid [MWh-ac]

 FMUGPW Net average power from grid [kW-ac]

 FMUGPF Power factor at grid [decimal]

 IMPTOT Imported cumulative energy from grid [MWh-ac]

 EXPTOT Exported cumulative energy to grid [MWh-ac]

 FMUG1V, FMUG2V, FMUG3V Inverter voltage from utility grid [V-ac]

 FMUG1A, FMUG2A, FMUG3A Inverter current from utility grid [A-ac]

 TOCLNT Net energy to critical load [MWh-ac]

 TOCLPW Net power to critical load [kW-ac]

 TOCLPF Power factor at critical load [decimal]

 TOCTOT Cumulative energy to critical load [MWh-ac]

 FMCTOT Cumulative energy from critical load [MWh-ac]

 TOCL1V, TOCL2V, TOCL3V Inverter voltage to critical load [V-ac]

 TOCL1A, TOCL2A, TOCL3A Inverter current to critical load [A-ac]

 WINDDIR Wind direction [0-255]

 POAIRR Plane of array irradiance [W/mB2]

 AMBTMP Ambient temperature [B0F]

 PVTMP1 Module temperature [B0F]

 WNDSPD Wind speed [m/s]

 BATTMP Battery bank temperature [B0F]

 CC1AMP, CC2AMP, CC3AMP Charge controller output current [A-dc]

 CC1VLT, CC2VLT, CC3VLT Charge controller 1 output voltage [V-dc]

 PVPRED Predicted PV power [kW-dc]

 save_metadata_template
 Save Metadata Template

 Description

 Saves a copy of the metadata template. This template is required for dashboard File save
 name: "metadata_template.csv"

 Usage

 save_metadata_template(path = NULL)

 Arguments

 path A directory path to save the .csv template. Default is the current working direc tory.

 Details

 utils::write.csv is used to save the template. See metadata_template and sample_metadata.

 Examples
 save_metadata_template()

 template Metadata Template

 Description

 Download with save_metadata_template. Please carefully follow the instructions when
 filling out the template. Load using load_metadata to ensure it has been properly filled out.
 Metadata required for use of dashboard .

 Usage

 template

 Format

 An object of class data.table (inherits from data.frame) with 12 rows and 51 columns.

 Details

 See metadata_sample for an example.

 time_frequency Time Frequency

 Description

 Finds median and mean timestamp in given photovoltaic data

 Usage

 time_frequency(data, timestamp.var)

 Arguments

 data A dataframe containing timeseries data

 timestamp.var A character. The name of the column in data that represents time.

 Value

 A data.table with MEAN, MEDIAN, and TIME_INTERVAL(s) columns representing
 respective statistic values

 yoy_degradation Year-Over-Year Degradation

 Description

 Calculate degradation annually using the year-over-year method.

 • Uses the formula: 100 * ((totalPower_month2 - totalPower_month1) /
 totalPower_month1) to calculate average monthly change.

 • Then groups by year to calculate the annual average.

 Usage

 yoy_degradation(
 data,
 timestamp.var,
 current.var,
 voltage.var,
 power.var = NULL

)

 Arguments

 data A dataframe of time series data with columns containing (current output and voltage
 output data) or (power output data).

 timestamp.var A character. The name of the column in data that represents time.
 current.var A character. The name of the column in data that represents output current,

 "A-dc".
 voltage.var A character. The name of the column in data that represents output

 voltage, "V-dc".
 power.var A character. Default NULL. The name of the column that represents the power

 output values in data . See details.

 Details

 Use power.var when power output is already calculated and is present in the data.
 Otherwise, use current.var in combination with voltage.var .

 Value

 A data.table containing the mean power output and % change in power output by month

 Examples
 pv_deg <- yoy_degradation(data = schoolB_sample, timestamp.var = "TIMESTAMP",

 current.var = "PV1AMP", voltage.var = "PV2VLT")

 Dashboard Tutorial (with metadata example)

 This section provides a visual example of the metadata template. Other aids can be found in the

 package itself with:
 ?sample_metadata

 Name_of_File School Latitude Longitude Climate.zone

 schoolA_sampl
 e.rda

 schoolA 30.21181 -85.64371 1

 schoolB_samp
 le.rda

 schoolB 29.47800 -80.61210 5

 To edit the template for your own data, the template can be saved with:
 > save_metadata_template()

 The file “metadata_template.csv” can now be found in the current working directory.

 Walkthrough Vignette [R]
 This section covers the “Getting Started & Dashboard Walkthrough” vignette for the R package,

 pv.ts.sandbox.

 Getting Started & Dashboard Walkthrough
 This package provides all the necessary functions for populating the pv.ts.sandbox dashboard.

 Getting Started

 Metadata

 The dashboard() function is dependent on a metadata template, this is what populates the
 map markers. Firstly, download the template, it will be saved to your working directory with the
 file name ‘metadata_template.csv’.

 library(pv.ts.sandbox)
 #> Loading required package: shiny
 save_metadata_template()

 To fill out the template:

 ● Name_of_File: This column should contain the file names with extension of the data to
 use with the dashboard. If the data is found in the file ‘my_data.csv’, then ‘my_data.csv’
 should be written here.

 ● School: This column should contain the name of the geographical location where that
 file’s data was collected. If the data is from the University of Central Florida,then
 ‘University of Central Florida’ would be written here.

 ● Latitude: This column should contain the latitude coordinate corresponding to the data.
 For the University of Central Florida, ‘28.602520092994908’ would be entered. There is
 not a significant digit requirement, feel free to be as precise or imprecise as necessary.

 ● Longitude: For This column should contain the latitude coordinate corresponding to the
 data. For the University of Central Florida, ‘-81.2000838882772’ would be entered.
 There is not a significant digit requirement, feel free to be as precise or imprecise as
 necessary.

 ● Climate zone: This column should contain the climate zone the data exists in. If this
 information is unknown it can be left blank. For the University of Central Florida, ‘1’
 would be entered.

 ● Before loading the template, DELETE the first column, second row, and third row.

 Detailed instructions are also provided in the template itself, After completing this, the file
 should be loaded into your global environment.

 # load the completed metadata into the global environment
 md <- load_metadata(path = md_path)

 Loading Data Sets

 Loading the data is done using the function load_datasets() . This function takes 4
 parameters:

 ● data_dir: This is the full path to the folder containing the files specified in the metadata.
 If the data is stored in a folder on the desktop titled ‘data’, then the path would look

 something like “C:/Users/name/Desktop/data”. Therefore, data_dir =
 “C:/Users/name/Desktop/data”.

 ● metadata: This is the completed metadata template that should now be loaded into the
 global environment from the function load_metadata(). To continue with the example
 from above, metadata = md.

 ● timestamp_var: This is the column name containing date and time. In the sample data
 provided with this package this column is named ‘TIMESTAMP’. Therefore,
 timestamp_var = “TIMESTAMP”. All data sets must have a column with this name.

 ● timestamp_format: This is the format of your date-time data. If load_datasets() is
 used, keep the default for this parameter. In the sample data the format is ‘Jan 01
 2000-12:00:00’. Therefore, using this format, timestamp_format = “%b %d
 %Y-%H:%M:%S”. All data sets must have identical timestamp formats.

 # build list of data sets based on provided directory and completed metadata
 data_list <- load_datasets(data_directory, md)

 Launch the Dashboard

 Now that both the metadata and the list of data sets has been loaded into the environment, the
 dashboard can be launched.

 Typical User:

 md <- load_metadata(path)
 data_list <- load_datasets(data_directory, md)
 dashboard(dt_list = data_list, metadata = md,

 timestamp_var = "TIMESTAMP",
 timestamp_format = "%b %d %Y-%H:%M:%S")

 Developer:
 ensure pv.ts.sandbox.Rproj is the current, active project in RStudio
 library(devtools)
 load_all()
 md <- load_metadata(path)
 data_list <- load_datasets(data_directory, md)
 dashboard(dt_list = data_list, metadata = md,

 timestamp_var = "TIMESTAMP",
 timestamp_format = "%b %d %Y-%H:%M:%S")

 Dashboard Walkthrough

 If using RStudio, the Shiny dashboard will load in a new native window. Otherwise, the
 dashboard will load in your default browser.

 Map Tab

 This is the landing page of the dashboard.

 Figure [#] : R Dashboard Geospatial Visualization - Leaflet

 Each of the markers represents one of the data sets that were specified in the metadata. To view
 the name of the data set, hover over the marker.

 Figure [#] : R Dashboard Shiny Marker Hover Functionality

 Clicking on a marker reveals additional information about that data such as time range and
 number of rows.

 Figure [#] : R Dashboard Shiny Marker Click Functionality

 Quick Plots

 Clicking on a marker also selects it for the plotting. Notice how now that a marker has been
 clicked, the name is also present in the plot window. To select a different data set, simply select a
 new marker.

 Figure [#] : R Dashboard: Selecting a Location

 For scatter plots, each value is represented by one pixel as shown above. Both the x and y axis of
 the scatter plot can be changed with their respective drop down menus. The available selections
 will be the column names of the selected data.

 The plot type can be changed with the ‘Select Data Plot’ drop down.

 Figure [#] : R Dashboard: Map Page, select plot type

 After selecting the ‘Ridgeline’ option, the scatter plot is replaced with a ridgeline plot. The x
 variable can be changed by selecting a different variable from the drop down menu. The y-axis
 for ridgeline plots is year (other options available in the ‘Plot’ tab).

 Data Tab

 To navigate to a different page simply select it from the panel on the left.

 Figure [#] : R Dashboard: ShinyDashboard: Switch tabs

 Selecting ‘Data’ displays the data. At this point the type/class changes have been made to the
 data, all values are untouched.

 Figure [#] : R Dashboard: View data

 A different data set can be selected from the drop down menu and the data can be navigated
 using the ‘Show # entries’ menu just below, or via the search bar to the right.

 Figure [#] : R Dashboard: Change viewed dataset

 The download button allows you to save the current data. The download button will open the
 download manager for the system. From there, the file name and directory can be edited as usual.

 Figure [#] : R Dashboard: Download dataset

 Plot Tab

 Selecting ’Plot” from the sidebar will allow the comparison of data sets side-by-side.

 Figure [#] : R Dashboard: Plots Page, comparison of 2 datasets

 Select the data sets to compare with the ‘Dataset’ drop down menu (red). This allows the
 comparison across data sets, or within data sets. Select the plot type (purple). These options are
 identical to those from the ‘Map’ tab. This tab allows for manipulation of the time frame of the
 data with the ‘Date Range’ option (orange). Currently selections are only possible in full day
 increments. Once all desired selections have been made, render the plot with the ‘Generate Plot’
 buttons (blue). These plots can be downloaded for external use via the ‘Download’ buttons
 (green). This will open the download manager used by the system. From there, the file name and
 directory can be edited as usual.

 Analysis Tab

 This tab displays the relevant statistics of the selected data.

 Figure [#] : R Dashboard: Analysis Page. Statistically Summary & Performance Loss Rate
 Analysis

 The data to summarize can be changed with the ‘Select Location’ menu (red). Performance Loss
 Rate (PLR) analysis is calculated based on the selected parameter (blue, purple, orange).
 ‘Timestamp’ (blue) is initially filled with the first POSIXt column. ‘Current’ (purple) is initially
 filled with the first numeric column. ‘Voltage’ is initially filled with the last numeric column and
 the drop-down options are reversed. Once selections have been made, the table will populate.
 PLR calculations are performed using a twist on the year-over-year degradation method.
 Traditionally:

 # Traditional degradation rate
 degradation <- 100 * ((totalPower_year2 - totalPower_year1) / totalPower_year1)

 In this package degradation is first calculated on a monthly scale, and then condensed by taking
 the mean of month grouped by year.

 The ‘General Statistics’ section (green) displays the common summary statistics, mean, median,
 mode, standard deviation, minimum, and maximum, for all numeric columns in the data.

 Performance Loss Rate (Year-Over-Year Degradation)

 Degradation is defined as the loss of power produced related to the rated power. In order to find

 the annual degradation rate, we must first find the annual power output of the photovoltaic

 system. In these packages this was done by simply multiplying current and voltage

 𝑃 = 𝐼𝑉

 As a starting point for this calculation, we assumed all other variables are held constant.

 Specifically, this means there was no degradation in any other components of the system and

 that weather and irradiance were constant for the entire year. This allowed us to performance a

 simple percent difference calculation, following the formula:

 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑌𝑒𝑎 𝑟
 𝑛

= (100 * (𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡𝑌𝑒𝑎 𝑟
 𝑛 − 1

− 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡𝑌𝑒𝑎 𝑟
 𝑛
)) / 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡𝑌𝑒𝑎 𝑟

 𝑛 − 1

 Realistically, other components of the photovoltaic system will wear down over time, and the
 weather and irradiance will not remain constant for a full year. However, this formula is a quick
 and efficient calculation that determines if a photovoltaic system is performing within the
 manufacturer's guaranteed range, or if further data collection is required to perform a more in
 depth analysis.

